2,6-Dichloronicotinic acid Thermodynamic Properties vs Temperature (CAS 38496-18-3)

Analyze how thermophysical properties change over a temperature range at a constant pressure of 1 atm.

Input Conditions

Define the chemical and range for the property profile.

Loading...

Property Profile for 2,6-Dichloronicotinic acid

Calculated properties vs. Temperature

Profile Data

Equilibrium Thermodynamic and Transport Properties of 2,6-Dichloronicotinic acid at 1.01325 bar over -23.15–226.85 °C
Temperature (°C)Specific heat capacity (kJ/kg·K)Density (kg/m³)Dynamic viscosity (cP)Thermal conductivity (W/m·K)Prandtl number ()Molar volume (m³/kmol)Specific enthalpy (kJ)Specific entropy (kJ/kg·K)Phase
-23.150.5787821568.37N/A N/A N/A 0.12242-30.691-0.111964s
-18.0480.5910531565.78N/A N/A N/A 0.122622-27.7067-0.100148s
-12.94590.6033811563.2N/A N/A N/A 0.122825-24.6597-0.0883221s
-7.843880.6157671560.61N/A N/A N/A 0.123028-21.5497-0.0764858s
-2.741840.628211558.02N/A N/A N/A 0.123233-18.3763-0.0646385s
2.36020.6407111555.44N/A N/A N/A 0.123437-15.1393-0.0527796s
7.462240.653271552.85N/A N/A N/A 0.123643-11.8383-0.0409083s
12.56430.6658871550.27N/A N/A N/A 0.123849-8.47316-0.0290241s
17.66630.6785621547.68N/A N/A N/A 0.124056-5.04347-0.0171264s
22.76840.6912971545.1N/A N/A N/A 0.124264-1.54895-0.00521473s
27.87040.704091542.51N/A N/A N/A 0.1244722.010680.00671154s
32.97240.7169411539.93N/A N/A N/A 0.1246815.635730.0186529s
38.07450.7298521537.34N/A N/A N/A 0.124899.326510.0306097s
43.17650.7428221534.76N/A N/A N/A 0.12510113.08330.0425826s
48.27860.7558511532.17N/A N/A N/A 0.12531216.90640.0545719s
53.38060.7689391529.59N/A N/A N/A 0.12552420.79620.066578s
58.48270.7820871527N/A N/A N/A 0.12573624.75280.0786014s
63.58470.7952941524.42N/A N/A N/A 0.1259528.77680.0906423s
68.68670.8085611521.83N/A N/A N/A 0.12616332.86820.102701s
73.78880.8218881519.25N/A N/A N/A 0.12637837.02750.114779s
78.89080.8352741516.66N/A N/A N/A 0.12659441.25490.126875s
83.99290.848721514.08N/A N/A N/A 0.1268145.55080.13899s
89.09490.8622261511.49N/A N/A N/A 0.12702749.91540.151124s
94.19690.8757911508.91N/A N/A N/A 0.12724454.34910.163278s
99.2990.8894171506.32N/A N/A N/A 0.12746358.85220.175451s
104.4010.9031021503.73N/A N/A N/A 0.12768263.42490.187645s
109.5030.9168481501.15N/A N/A N/A 0.12790268.06760.19986s
114.6050.9306541498.56N/A N/A N/A 0.12812272.78060.212095s
119.7070.944521495.98N/A N/A N/A 0.12834477.56420.224351s
124.8090.9584461493.39N/A N/A N/A 0.12856682.41860.236628s
129.9110.9724321490.81N/A N/A N/A 0.12878987.34430.248926s
135.0130.9864781488.22N/A N/A N/A 0.12901392.34150.261246s
140.1151.000581485.64N/A N/A N/A 0.12923797.41050.273588s
145.2171.204661324.07N/A 0.10722N/A 0.145007249.6450.637725l
150.3191.212521319.85N/A 0.106531N/A 0.145471255.8120.652375l
155.4211.220121315.61N/A 0.105842N/A 0.14594262.0180.666942l
160.5231.227471311.35N/A 0.105153N/A 0.146414268.2620.681425l
165.6261.234561307.06N/A 0.104463N/A 0.146894274.5420.695823l
170.7281.241391302.76N/A 0.103774N/A 0.147379280.8590.710135l
175.831.247971298.43N/A 0.103085N/A 0.14787287.2090.724361l
180.9321.254281294.09N/A 0.102396N/A 0.148367293.5930.738498l
186.0341.260341289.72N/A 0.101707N/A 0.148869300.0080.752546l
191.1361.266151285.33N/A 0.101018N/A 0.149378306.4530.766505l
196.2381.271691280.91N/A 0.100329N/A 0.149893312.9270.780374l
201.341.276981276.47N/A 0.0996399N/A 0.150414319.4290.79415l
206.4421.282011272.01N/A 0.0989508N/A 0.150942325.9570.807835l
211.5441.286791267.52N/A 0.0982617N/A 0.151476332.510.821427l
216.6461.29131263.01N/A 0.0975726N/A 0.152017339.0870.834925l
221.7481.295561258.47N/A 0.0968835N/A 0.152565345.6860.848329l
226.851.299571253.91N/A 0.0961944N/A 0.15312352.3070.861638l

Property Profiles for 2,6-Dichloronicotinic acid

Heat Capacity (Cp) vs Temperature

Download image

Density vs Temperature

Download image

Thermodynamic Property Profile at Constant Pressure

This page presents the temperature-dependent thermodynamic and transport properties of 2,6-Dichloronicotinic acid (CAS 38496-18-3) calculated at a constant pressure of 1 atm (101325 Pa) over the temperature range 250-500 K.

The properties shown - specific heat capacity (Cp), density (ρ), dynamic viscosity (μ), thermal conductivity (k), Prandtl number (Pr), molar volume (Vm), specific enthalpy (H), and specific entropy (S) - are among the most commonly used parameters in chemical engineering calculations, process simulation, and thermal system design.

All values are generated programmatically using validated thermodynamic correlations and equations of state and represent equilibrium properties at the specified pressure.


Understanding the Property Trends

  • Specific heat capacity (Cp) indicates the amount of energy required to raise the temperature of 2,6-Dichloronicotinic acid and is critical for energy balance and heat-exchanger design.
  • Density (ρ) and molar volume (Vm) describe volumetric behavior and are required for flow calculations, equipment sizing, and storage design.
  • Dynamic viscosity (μ) governs fluid flow resistance, influencing Reynolds number and pressure drop.
  • Thermal conductivity (k) and Prandtl number (Pr) are essential inputs for convective heat-transfer correlations.
  • Specific enthalpy (H) and specific entropy (S) are fundamental thermodynamic properties used in process modeling, compression, and expansion analysis.

Property trends with temperature may vary depending on molecular structure, intermolecular interactions, and phase stability.


Engineering Applications

The temperature-dependent properties of 2,6-Dichloronicotinic acid at atmospheric pressure are commonly required in:

  • Heat exchanger and reactor design
  • Process simulation and thermodynamic modeling
  • Fluid flow and pressure-drop calculations
  • Energy balance and equipment sizing
  • Chemical engineering education and research

These profiles are particularly useful when evaluating system performance over a wide operating temperature range under near-ambient pressure conditions.


Frequently Asked Questions

At what pressure are these properties calculated?
All properties on this page are calculated at a constant pressure of 1 atm (101325 Pa).

Can these values be used in process simulation software?
Yes. The data is suitable for preliminary design, validation, and educational use. For licensed simulators, vendor-specific property packages should be referenced.

Can I change the pressure or temperature range?
Yes. Use the interactive controls above to generate custom property profiles at different pressures or temperature ranges.


Explore Other Chemicals

3,8-Dibromo-1,6-naphthyridine

CAS: 17965-75-2

4,6-Dimethoxy-2-(methylsulfonyl)pyrimidine

CAS: 113583-35-0

3-Methyl-5-isoxazolecarboxylic acid

CAS: 4857-42-5

1,2-Difluoro-4,5-dimethoxybenzene

CAS: 203059-80-7

trans-Isoeugenol

CAS: 5932-68-3

2-Naphthalenecarboxylic acid, 6-bromo-, methyl ester

CAS: 33626-98-1

β-L-Ribofuranose, 1,2,3,5-tetraacetate

CAS: 144490-03-9

(9Z)-N,N-Dimethyl-9-[3-(4-methyl-1-piperazinyl)propylidene]-9H-thioxanthene-2-sulfonamide

CAS: 3313-26-6

ethyl 4-bromomethylbenzoate

CAS: 26496-94-6

1-(4-Chloro-2-hydroxyphenyl)ethanone

CAS: 6921-66-0

Browse A-Z Chemical Index