1-Tetracontene Thermodynamic Properties vs Temperature (CAS 61868-18-6)

Analyze how thermophysical properties change over a temperature range at a constant pressure of 1 atm.

Input Conditions

Define the chemical and range for the property profile.

Loading...

Property Profile for 1-Tetracontene

Calculated properties vs. Temperature

Profile Data

Equilibrium Thermodynamic and Transport Properties of 1-Tetracontene at 1.01325 bar over -23.15–226.85 °C
Temperature (°C)Specific heat capacity (kJ/kg·K)Density (kg/m³)Dynamic viscosity (cP)Thermal conductivity (W/m·K)Prandtl number ()Molar volume (m³/kmol)Specific enthalpy (kJ)Specific entropy (kJ/kg·K)Phase
-23.151.45979836.513N/A N/A N/A 0.670716-75.4527-0.275458s
-18.0481.48261835.462N/A N/A N/A 0.67156-67.9466-0.245736s
-12.94591.5054834.411N/A N/A N/A 0.672406-60.3241-0.216152s
-7.843881.52814833.36N/A N/A N/A 0.673254-52.5854-0.1867s
-2.741841.55085832.309N/A N/A N/A 0.674104-44.7308-0.157376s
2.36021.57353831.258N/A N/A N/A 0.674957-36.7605-0.128176s
7.462241.59618830.207N/A N/A N/A 0.675811-28.6745-0.0990955s
12.56431.61879829.156N/A N/A N/A 0.676668-20.473-0.0701315s
17.66631.64138828.105N/A N/A N/A 0.677527-12.1562-0.0412803s
22.76841.66393827.053N/A N/A N/A 0.678388-3.72429-0.0125383s
27.87041.68646826.002N/A N/A N/A 0.6792514.822650.0160978s
32.97241.70896824.951N/A N/A N/A 0.68011713.48450.0446309s
38.07451.73144823.9N/A N/A N/A 0.68098422.2610.0730642s
43.17651.75389822.849N/A N/A N/A 0.68185431.15210.1014s
48.27861.77631821.798N/A N/A N/A 0.68272740.15780.129642s
53.38061.79871820.747N/A N/A N/A 0.68360149.27770.157792s
58.48271.82109819.696N/A N/A N/A 0.68447758.51190.185853s
63.58471.84344818.645N/A N/A N/A 0.68535667.86020.213826s
68.68671.86577817.593N/A N/A N/A 0.68623777.32250.241715s
73.78881.88808816.542N/A N/A N/A 0.68712186.89870.269522s
78.89081.91037815.491N/A N/A N/A 0.68800696.58870.297248s
83.99291.93264814.44N/A N/A N/A 0.688894106.3920.324895s
89.09491.95488813.389N/A N/A N/A 0.689785116.3090.352467s
94.19691.97711812.338N/A N/A N/A 0.690677126.340.379963s
99.2991.99931811.287N/A N/A N/A 0.691572136.4840.407387s
104.4012.0215810.236N/A N/A N/A 0.692469146.7410.434739s
109.5032.04366809.185N/A N/A N/A 0.693369157.1110.462022s
114.6052.06581808.133N/A N/A N/A 0.69427167.5950.489238s
119.7072.08793807.082N/A N/A N/A 0.695175178.1910.516386s
124.8092.11004806.031N/A N/A N/A 0.696081188.90.54347s
129.9112.13213804.98N/A N/A N/A 0.69699199.7220.57049s
135.0132.1542803.929N/A N/A N/A 0.697901210.6570.597449s
140.1152.17625802.878N/A N/A N/A 0.698815221.7040.624346s
145.2172.19829801.827N/A N/A N/A 0.699731232.8630.651184s
150.3192.2203800.776N/A N/A N/A 0.70065244.1350.677963s
155.4212.2423799.725N/A N/A N/A 0.701571255.5190.704685s
160.5232.26428798.673N/A N/A N/A 0.702494267.0160.731351s
165.6262.28624797.622N/A N/A N/A 0.70342278.6240.757963s
170.7282.30819796.571N/A N/A N/A 0.704348290.3450.78452s
175.832.33012795.52N/A N/A N/A 0.705278302.1770.811025s
180.9322.35203794.469N/A N/A N/A 0.706212314.1210.837478s
186.0342.37392793.418N/A N/A N/A 0.707147326.1770.86388s
191.1362.3958792.367N/A N/A N/A 0.708085338.3450.890232s
196.2382.41766791.316N/A N/A N/A 0.709026350.6240.916535s
201.342.4395790.265N/A N/A N/A 0.709969363.0150.94279s
206.4422.46133789.213N/A N/A N/A 0.710914375.5170.968998s
211.5442.48314788.162N/A N/A N/A 0.711862388.1310.995159s
216.6462.50493787.111N/A N/A N/A 0.712813400.8551.02127s
221.7482.52671786.06N/A N/A N/A 0.713766413.6911.04735s
226.852.54847785.009N/A N/A N/A 0.714722426.6381.07337s

Property Profiles for 1-Tetracontene

Heat Capacity (Cp) vs Temperature

Download image

Density vs Temperature

Download image

Thermodynamic Property Profile at Constant Pressure

This page presents the temperature-dependent thermodynamic and transport properties of 1-Tetracontene (CAS 61868-18-6) calculated at a constant pressure of 1 atm (101325 Pa) over the temperature range 250-500 K.

The properties shown - specific heat capacity (Cp), density (ρ), dynamic viscosity (μ), thermal conductivity (k), Prandtl number (Pr), molar volume (Vm), specific enthalpy (H), and specific entropy (S) - are among the most commonly used parameters in chemical engineering calculations, process simulation, and thermal system design.

All values are generated programmatically using validated thermodynamic correlations and equations of state and represent equilibrium properties at the specified pressure.


Understanding the Property Trends

  • Specific heat capacity (Cp) indicates the amount of energy required to raise the temperature of 1-Tetracontene and is critical for energy balance and heat-exchanger design.
  • Density (ρ) and molar volume (Vm) describe volumetric behavior and are required for flow calculations, equipment sizing, and storage design.
  • Dynamic viscosity (μ) governs fluid flow resistance, influencing Reynolds number and pressure drop.
  • Thermal conductivity (k) and Prandtl number (Pr) are essential inputs for convective heat-transfer correlations.
  • Specific enthalpy (H) and specific entropy (S) are fundamental thermodynamic properties used in process modeling, compression, and expansion analysis.

Property trends with temperature may vary depending on molecular structure, intermolecular interactions, and phase stability.


Engineering Applications

The temperature-dependent properties of 1-Tetracontene at atmospheric pressure are commonly required in:

  • Heat exchanger and reactor design
  • Process simulation and thermodynamic modeling
  • Fluid flow and pressure-drop calculations
  • Energy balance and equipment sizing
  • Chemical engineering education and research

These profiles are particularly useful when evaluating system performance over a wide operating temperature range under near-ambient pressure conditions.


Frequently Asked Questions

At what pressure are these properties calculated?
All properties on this page are calculated at a constant pressure of 1 atm (101325 Pa).

Can these values be used in process simulation software?
Yes. The data is suitable for preliminary design, validation, and educational use. For licensed simulators, vendor-specific property packages should be referenced.

Can I change the pressure or temperature range?
Yes. Use the interactive controls above to generate custom property profiles at different pressures or temperature ranges.


Explore Other Chemicals

1-(4-Chlorophenyl)-2-phenyl-2-propen-1-one

CAS: 59074-25-8

tetracosylbenzene

CAS: 61828-05-5

dotriacontylbenzene

CAS: 61828-29-3

1-Cyclopropyl-4-(1-methylethyl)benzene

CAS: 27546-49-2

1,1,1-Trichlorotridecane

CAS: 3922-24-5

1-Bromotricosane

CAS: 62108-44-5

4-Ethoxy-α-methylbenzenemethanol

CAS: 52067-36-4

2,3-Dihydro-α,α-bis(trifluoromethyl)-1H-indole-5-methanol

CAS: 65797-54-8

1-Butyne-1,4-diol

CAS: 628-23-9

1,3-Dimethyl 1,3-naphthalenedicarboxylate

CAS: 18713-38-7

Browse A-Z Chemical Index