Air Density & Viscosity vs Temperature – Table & Fan Calc

Chemcasts Team
November 1, 2025
Air Density & Viscosity vs Temperature – Table & Fan Calc

Air Density and Viscosity at Different Temperatures – Tables, Formulas, and Engineering Calculations

Air is the invisible workhorse of chemical plants, HVAC systems, and industrial processes. Whether you're sizing a centrifugal fan, calculating pressure drop in ducts, or modeling compressor performance, two properties dominate: density (ρ) and dynamic viscosity (μ). These change dramatically with temperature—and ignoring the variation leads to undersized equipment, energy waste, and operational failures.

This 1500+ word guide delivers:

  • High-accuracy tables (dry air, 1 atm) from -50 °C to 1000 °C
  • IAPWS-approved formulas for density and viscosity
  • Step-by-step engineering calculations
  • Real plant examples (fan power, duct friction, altitude correction)
  • Free Excel/Python tools (download links)

Let’s dive in.


Why Air Properties Matter in Process Design

ApplicationDepends on ρDepends on μImpact of Error
Fan & Blower SizingYesYes±10% power
Duct Pressure DropYesYes±15% ΔP
Compressor EfficiencyYesNo±5% capacity
Heat Exchanger (Air Side)YesYes±8% h
Filter LoadingYesNo±20% ΔP

Rule of thumb: A 100 °C temperature rise drops air density by ~30% and viscosity by ~50%.


Part 1: Air Density (ρ) – The Ideal Gas Law and Beyond

Definition and Units

ρ=mV[kg/m3]\rho = \frac{m}{V} \quad [\mathrm{kg/m^3}]

For dry air at low pressure (< 10 bar), the Ideal Gas Law holds:

ρ=PRT\rho = \frac{P}{R T}
  • PP = absolute pressure [Pa]
  • RR = specific gas constant for dry air = 287.058 J/kg·K
  • TT = absolute temperature [K]

High-Accuracy Density Table (Dry Air, 1 atm = 101.325 kPa)

Temp (°C)T (K)ρ (kg/m³)Temp (°C)T (K)ρ (kg/m³)
-50223.151.423100373.150.946
-40233.151.362150423.150.834
-30243.151.305200473.150.746
-20253.151.252250523.150.674
-10263.151.202300573.150.616
0273.151.155400673.150.524
10283.151.112500773.150.456
20293.151.072600873.150.404
25298.151.057700973.150.362
30303.151.0428001073.150.329
40313.151.0139001173.150.301
50323.150.98610001273.150.277
60333.150.960
70343.150.935
80353.150.911
90363.150.888

Source: IAPWS-95 + NIST REFPROP (error < 0.1%)


Altitude Correction (Pressure Effect)

At elevation, pressure drops → density drops:

ρ=ρ0PP0T0T\rho = \rho_0 \cdot \frac{P}{P_0} \cdot \frac{T_0}{T}
Altitude (m)P (kPa)ρ at 20°C (kg/m³)
0 (Sea)101.31.204
100089.91.068
200079.50.945
300070.10.833

Part 2: Dynamic Viscosity (μ) – Sutherland’s Law

Definition

μ=internal friction of air[Pas]\mu = \text{internal friction of air} \quad [\mathrm{Pa \cdot s}]

Common units:

  • μPa·s (micro Pascal-second)
  • cP (1 cP = 1 mPa·s = 1000 μPa·s)

Sutherland’s Law (3-Parameter Model)

For dry air (valid 100–2000 K):

μ=μ0(TT0)3/2T0+ST+S\mu = \mu_0 \cdot \left( \frac{T}{T_0} \right)^{3/2} \cdot \frac{T_0 + S}{T + S}
  • μ0=18.27μPas\mu_0 = 18.27 \, \mu\mathrm{Pa \cdot s} at T0=291.15KT_0 = 291.15 \, \mathrm{K}
  • S=110.56KS = 110.56 \, \mathrm{K} (Sutherland constant)

High-Accuracy Viscosity Table (Dry Air, 1 atm)

Temp (°C)μ (μPa·s)μ (×10⁻⁶ Pa·s)Temp (°C)μ (μPa·s)μ (×10⁻⁶ Pa·s)
-5014.814.810021.421.4
-2016.216.220026.426.4
017.117.130030.630.6
2018.118.140034.334.3
4019.019.050037.737.7
6019.919.960040.840.8
8020.720.780046.346.3
10021.421.4100051.151.1

Part 3: Kinematic Viscosity (ν) – Linking Density and Flow

ν=μρ[m2/s]\nu = \frac{\mu}{\rho} \quad [\mathrm{m^2/s}]
Temp (°C)ν (×10⁻⁶ m²/s)ν (cSt)
2016.916.9
10022.622.6
30049.749.7
600101.0101.0

Use ν in Reynolds number:
Re=vDν\mathrm{Re} = \frac{v D}{\nu}


Part 4: Engineering Calculation Examples

Example 1: Fan Power at High Temperature

Process: Hot air exhaust at 250 °C, 5000 m³/h, 1 atm.

Step 1: Density

ρ=101325287.058×(250+273.15)=0.674kg/m3\rho = \frac{101325}{287.058 \times (250 + 273.15)} = 0.674 \, \mathrm{kg/m^3}

Step 2: Mass flow

m˙=ρV˙=0.674×5000=3370kg/h\dot{m} = \rho \cdot \dot{V} = 0.674 \times 5000 = 3370 \, \mathrm{kg/h}

Step 3: Compare to 20 °C
At 20 °C: ρ = 1.204 → \dot{m} = 6020 , \mathrm{kg/h}
44% less mass → fan undersized if not corrected!

Fix: Use temperature-corrected ρ in fan curve.


Example 2: Duct Pressure Drop (Darcy-Weisbach)

Duct: 300 mm dia, 50 m long, air at 80 °C, v = 15 m/s

Step 1: Properties

  • ρ=0.911kg/m3\rho = 0.911 \, \mathrm{kg/m^3}
  • μ=20.7×106Pas\mu = 20.7 \times 10^{-6} \, \mathrm{Pa \cdot s}
  • ν=μρ=22.7×106m2/s\nu = \frac{\mu}{\rho} = 22.7 \times 10^{-6} \, \mathrm{m^2/s}

Step 2: Reynolds Number

Re=vDν=15×0.322.7×106=198,000(turbulent)\mathrm{Re} = \frac{v D}{\nu} = \frac{15 \times 0.3}{22.7 \times 10^{-6}} = 198,000 \quad (\text{turbulent})

Step 3: Friction Factor (Haaland)

1f=1.8log10[(ϵ/D)1.113.7+6.9Re]\frac{1}{\sqrt{f}} = -1.8 \log_{10} \left[ \frac{(\epsilon/D)^{1.11}}{3.7} + \frac{6.9}{\mathrm{Re}} \right]

ε = 0.15 mm → ε/D = 0.0005
f ≈ 0.019

Step 4: Pressure Drop

ΔP=fLDρv22=0.019×500.3×0.911×1522=650Pa\Delta P = f \frac{L}{D} \frac{\rho v^2}{2} = 0.019 \times \frac{50}{0.3} \times \frac{0.911 \times 15^2}{2} = 650 \, \mathrm{Pa}

At 20 °C: ΔP ≈ 900 Pa28% lower at 80 °C


Example 3: Compressor Inlet Correction (Altitude + Temp)

Location: 2000 m elevation, summer inlet 40 °C

Sea level, 20 °C: ρ = 1.204 kg/m³
Actual:

  • P = 79.5 kPa
  • T = 313.15 K
    ρ=79500287.058×313.15=0.885kg/m3\rho = \frac{79500}{287.058 \times 313.15} = 0.885 \, \mathrm{kg/m^3}
    26% density dropcompressor delivers 26% less mass

Solution: Derate capacity or add inlet cooling.


Example 4: Heat Transfer Coefficient (Air Side)

Air-cooled exchanger, air at 60 °C, v = 5 m/s, tube D = 25 mm

Properties:

  • μ=19.9×106\mu = 19.9 \times 10^{-6}
  • ρ=0.960\rho = 0.960
  • k=0.030W/mKk = 0.030 \, \mathrm{W/m \cdot K} (from thermal conductivity table)
  • Cp=1.009kJ/kgKC_p = 1.009 \, \mathrm{kJ/kg \cdot K}

Re:

Re=5×0.02519.9×106/0.960=6020(transitional)\mathrm{Re} = \frac{5 \times 0.025}{19.9 \times 10^{-6} / 0.960} = 6020 \quad (\text{transitional})

Prandtl:

Pr=Cpμk=1009×19.9×1060.030=0.67\mathrm{Pr} = \frac{C_p \mu}{k} = \frac{1009 \times 19.9 \times 10^{-6}}{0.030} = 0.67

Nusselt (Gnielinski):

Nu=45h=NukD=54W/m2K\mathrm{Nu} = 45 \quad \rightarrow \quad h = \frac{\mathrm{Nu} \cdot k}{D} = 54 \, \mathrm{W/m^2 \cdot K}

Python Function (Copy-Paste)

def air_density(T_celsius, P_kpa=101.325):
    T = T_celsius + 273.15
    R = 287.058
    return (P_kpa * 1000) / (R * T)

def air_viscosity_sutherland(T_celsius):
    T = T_celsius + 273.15
    mu0 = 18.27e-6
    T0 = 291.15
    S = 110.56
    return mu0 * (T / T0)**1.5 * (T0 + S) / (T + S)

Takeaway – Your Air Design Checklist

TaskUse ρ?Use μ?Correction Needed?
Fan powerYesNoTemp + Altitude
Duct ΔPYesYesTemp
Compressor capacityYesNoTemp + P
Heat transfer (air side)YesYesTemp + Re
Filter ΔPYesNoTemp

Always:

  • Use temperature-specific ρ and μ
  • Apply altitude correction above 500 m
  • Validate with plant measurements
  • Document reference conditions