Specific Heat of Water vs Temperature – Table & Calc

Chemcasts Team
November 30, 2025
Specific Heat of Water vs Temperature – Table & Calc

Specific Heat Capacity of Water - The Hidden Factor in Energy Balances and Heat Transfer

Water is often called the “gold standard” for heat transfer fluids because of its high specific heat capacity-the amount of energy required to raise 1 kg of water by 1 °C. But that value isn’t fixed at 4.184 kJ/kg·°C. It changes with temperature, pressure, and phase. Misusing a constant value leads to oversized heaters, undersized coolers, incorrect energy balances, and millions in wasted utilities.

This post gives you temperature- and pressure-dependent data, IAPWS-approved equations, step-by-step calculations, measurement tips, and real plant examples so you can close energy balances with confidence.


What Is Specific Heat Capacity?

Specific heat capacity at constant pressure (Cp) is:

Cp=(hT)PC_p = \left( \frac{\partial h}{\partial T} \right)_P

where:

  • hh = specific enthalpy (kJ/kg)
  • TT = temperature (°C or K)
  • PP = pressure (bar)

Units:

  • kJ/kgC\mathrm{kJ/kg \cdot ^\circ C} or kJ/kgK\mathrm{kJ/kg \cdot K}
  • kcal/kgC\mathrm{kcal/kg \cdot ^\circ C} (1 kcal = 4.184 kJ)
  • Btu/lbF\mathrm{Btu/lb \cdot ^\circ F} (1 Btu/lb·°F ≈ 4.184 kJ/kg·°C)

For liquid water at 20 °C, 1 atm:

  • Cp4.1816kJ/kgCC_p \approx 4.1816 \, \mathrm{kJ/kg \cdot ^\circ C}

Myth busted: “Cp = 4.184 always” → wrong in hot or cold water systems.


Temperature Dependence: It’s Not Constant

Cp has a minimum near 37 °C (body temperature) due to water’s anomalous molecular structure. It rises at both lower and higher temperatures.

Below is a high-accuracy table from IAPWS-95 for liquid water at 1 atm (rounded to 4 decimals):

Specific Heat Capacity of Water (Cp) vs Temperature

Cp of liquid water from 0 to 300°C. Polynomial fit, ideal for heat exchanger duty and energy balance calculations.

Temperature (°C)Specific Heat (kJ/kg·°C)
04.2176
204.1816
404.1786
604.1848
804.1964

Specific Heat of Water vs Temperature

Cp of liquid water from 0 to 300°C. Polynomial fit, ideal for heat exchanger duty and energy balance calculations.

Temp (°C)Cp (kJ/kg·°C)Temp (°C)Cp (kJ/kg·°C)
04.2176504.1810
54.2024604.1848
104.1921704.1898
154.1855804.1964
204.1816904.2050
254.17961004.2159
304.17881204.2430
354.17841504.3020
374.17832004.4510
404.17862504.6780
454.17963005.1410

Key insight: From 0 °C to 100 °C, Cp varies by ~1 %. From 20 °C to 250 °C, +12 %.


Accurate Cp Equation (0-350 °C, < 0.1 % error)

Use the IAPWS polynomial for liquid water at saturation pressure (or 1 bar for T < 100 °C):

Cp(T)=a1+a2T+a3T2+a4T3+a5T4C_p(T) = a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 T^4

where TT is in °C, and coefficients (valid 0-350 °C):

CoefficientValue × 10³
a1a_14.2140000
a2a_2-0.0038465
a3a_30.00010242
a4a_4-1.98126 × 10⁻⁶
a5a_51.7563 × 10⁻⁸

CpC_p in kJ/kg·°C

Or use the simplified version (0-100 °C, ±0.2 %):
Cp(T)4.1816+0.00036(T20)C_p(T) \approx 4.1816 + 0.00036(T - 20)


Pressure Effects: When to Care

Cp increases slightly with pressure due to reduced molecular freedom.

Rule of thumb (liquid water):

  • ΔCp/Cp+0.01% per bar\Delta C_p / C_p \approx +0.01 \% \text{ per bar}
  • At 100 bar: ΔCp+1%\Delta C_p \approx +1 \%
  • At 200 bar: ΔCp+2%\Delta C_p \approx +2 \%

Negligible below 20 bar. Use IAPWS-95 or REFPROP for supercritical or high-P steam systems.


Measuring Cp: Lab and Plant Methods

MethodBest ForAccuracyCost
Differential Scanning Calorimetry (DSC)Lab reference±0.1 %High
Flow calorimeterInline process streams±0.5 %High
Electrical heater + ΔTQuick plant test±2 %Low
Steam tables / IAPWSDesign & simulation±0.05 %Free

Pro tip: For plant validation, heat a known mass of water with a calibrated electric heater and measure ΔT\Delta T.


Why Cp Matters in Process Design

1. Heat Exchanger Duty

Energy balance:

Q=m˙CpΔTQ = \dot{m} C_p \Delta T

Error example:
Using Cp=4.18C_p = 4.18 at 100 °C instead of 4.2160.9 % low dutyundersized exchanger.

2. Steam and Condensate Systems

Latent heat dominates, but sensible heat in subcooling uses Cp. Condensate at 120 °C → 80 °C: Δh = Cp × 40 ≈ 168 kJ/kg

3. Cooling Water Systems

Cold water (10 °C) has higher Cpmore heat absorbed per kg than warm water.

4. Reactor Energy Balance

Exothermic reaction cooled by jacket water:

  • Cp rise from 30 °C → 70 °C → +0.3 % more cooling capacity

5. Utility Cost Tracking

Incorrect Cp → wrong energy allocationmisreported KPIs


Specific Heat Calculation Examples (Step-by-Step)

Example 1: Calculate Cp at 75 °C using polynomial

T=75T = 75

Cp=4.2140.0038465×75+0.00010242×7521.98126×106×753+1.7563×108×754\begin{align*} C_p &= 4.214 \\ &\quad - 0.0038465 \times 75 \\ &\quad + 0.00010242 \times 75^2 \\ &\quad - 1.98126 \times 10^{-6} \times 75^3 \\ &\quad + 1.7563 \times 10^{-8} \times 75^4 \end{align*}

Step-by-step:

  1. 0.0038465×75=0.2885-0.0038465 \times 75 = -0.2885
  2. 0.00010242×5625=0.57610.00010242 \times 5625 = 0.5761
  3. 1.98126×106×421875=0.8357-1.98126 \times 10^{-6} \times 421875 = -0.8357
  4. 1.7563×108×31640625=0.55581.7563 \times 10^{-8} \times 31640625 = 0.5558

Sum:
Cp=4.2140.2885+0.57610.8357+0.55584.2217kJ/kgCC_p = 4.214 - 0.2885 + 0.5761 - 0.8357 + 0.5558 \approx 4.2217 \, \mathrm{kJ/kg \cdot ^\circ C}

Table check: 70 °C = 4.1898, 80 °C = 4.1964 → 75 °C ≈ 4.193polynomial slightly high but within 0.7 %

Use IAPWS table value: 4.193 kJ/kg·°C


Example 2: Cooling tower makeup water (30 °C → 45 °C)

ΔT=15C\Delta T = 15 \, ^\circ \text{C}
Average T=37.5CT = 37.5 \, ^\circ \text{C}Cp4.178kJ/kgCC_p \approx 4.178 \, \mathrm{kJ/kg \cdot ^\circ C}

Heat removed per kg: q=4.178×15=62.67kJ/kgq = 4.178 \times 15 = 62.67 \, \mathrm{kJ/kg}

For 1000 kg/h flow: Q=62.67MJ/h=17.4kWQ = 62.67 \, \mathrm{MJ/h} = 17.4 \, \mathrm{kW}

Using constant 4.184 → +0.1 % error → negligible here, but scales in large plants.


Example 3: High-pressure boiler feedwater (200 bar, 250 °C)

From IAPWS-95:

  • Cp4.75kJ/kgCC_p \approx 4.75 \, \mathrm{kJ/kg \cdot ^\circ C} (+7 % vs. 20 °C)

Impact:
Pump work increases, but sensible heat to saturation requires more steam if Cp underestimated.


Example 4: Winter vs. summer chiller load

Winter inlet: 5 °C → Cp=4.202C_p = 4.202
Summer inlet: 35 °C → Cp=4.178C_p = 4.178

Same ΔT=7C\Delta T = 7 \, ^\circ \text{C}, same flow →
Winter removes 0.6 % more heatchiller runs easier


Takeaway

Water’s specific heat is not 4.184. It varies:

  • ±1 % from 0-100 °C
  • +12 % at 250 °C
  • +2 % at 200 bar

Always use temperature-corrected Cp for:

  • Accurate Q = mCpΔT
  • Correct steam tables interpolation
  • Valid energy balances
  • Realistic utility forecasts

With the table, polynomial, and examples above, you can now eliminate Cp-related errors in your process.