1-Methyl-3-phenylpiperazine Thermodynamic Properties vs Pressure (CAS 5271-27-2)

Analyze how thermophysical properties change over a pressure range at a constant temperature of 25 °C.

Input Conditions

Define the chemical and range for the property profile.

Loading...

Property Profile for 1-Methyl-3-phenylpiperazine

Calculated properties vs. Pressure

Profile Data

Equilibrium Thermodynamic and Transport Properties of 1-Methyl-3-phenylpiperazine at 25 °C over 0.1–10 bar
Pressure (bar)Specific heat capacity (kJ/kg·K)Density (kg/m³)Dynamic viscosity (cP)Thermal conductivity (W/m·K)Prandtl number ()Molar volume (m³/kmol)Specific enthalpy (kJ)Specific entropy (kJ/kg·K)Phase
0.11.387331121.33N/A N/A N/A 0.15718700s
0.3020411.387331121.33N/A N/A N/A 0.15718700s
0.5040821.387331121.33N/A N/A N/A 0.15718700s
0.7061221.387331121.33N/A N/A N/A 0.15718700s
0.9081631.387331121.33N/A N/A N/A 0.15718700s
1.11021.387331121.33N/A N/A N/A 0.15718700s
1.312241.387331121.33N/A N/A N/A 0.15718700s
1.514291.387331121.33N/A N/A N/A 0.15718700s
1.716331.387331121.33N/A N/A N/A 0.15718700s
1.918371.387331121.33N/A N/A N/A 0.15718700s
2.120411.387331121.33N/A N/A N/A 0.15718700s
2.322451.387331121.33N/A N/A N/A 0.15718700s
2.524491.387331121.33N/A N/A N/A 0.15718700s
2.726531.387331121.33N/A N/A N/A 0.15718700s
2.928571.387331121.33N/A N/A N/A 0.15718700s
3.130611.387331121.33N/A N/A N/A 0.15718700s
3.332651.387331121.33N/A N/A N/A 0.15718700s
3.534691.387331121.33N/A N/A N/A 0.15718700s
3.736731.387331121.33N/A N/A N/A 0.15718700s
3.938781.387331121.33N/A N/A N/A 0.15718700s
4.140821.387331121.33N/A N/A N/A 0.15718700s
4.342861.387331121.33N/A N/A N/A 0.15718700s
4.54491.387331121.33N/A N/A N/A 0.15718700s
4.746941.387331121.33N/A N/A N/A 0.15718700s
4.948981.387331121.33N/A N/A N/A 0.15718700s
5.151021.387331121.33N/A N/A N/A 0.15718700s
5.353061.387331121.33N/A N/A N/A 0.15718700s
5.55511.387331121.33N/A N/A N/A 0.15718700s
5.757141.387331121.33N/A N/A N/A 0.15718700s
5.959181.387331121.33N/A N/A N/A 0.15718700s
6.161221.387331121.33N/A N/A N/A 0.15718700s
6.363271.387331121.33N/A N/A N/A 0.15718700s
6.565311.387331121.33N/A N/A N/A 0.15718700s
6.767351.387331121.33N/A N/A N/A 0.15718700s
6.969391.387331121.33N/A N/A N/A 0.15718700s
7.171431.387331121.33N/A N/A N/A 0.15718700s
7.373471.387331121.33N/A N/A N/A 0.15718700s
7.575511.387331121.33N/A N/A N/A 0.15718700s
7.777551.387331121.33N/A N/A N/A 0.15718700s
7.979591.387331121.33N/A N/A N/A 0.15718700s
8.181631.387331121.33N/A N/A N/A 0.15718700s
8.383671.387331121.33N/A N/A N/A 0.15718700s
8.585711.387331121.33N/A N/A N/A 0.15718700s
8.787761.387331121.33N/A N/A N/A 0.15718700s
8.98981.387331121.33N/A N/A N/A 0.15718700s
9.191841.387331121.33N/A N/A N/A 0.15718700s
9.393881.387331121.33N/A N/A N/A 0.15718700s
9.595921.387331121.33N/A N/A N/A 0.15718700s
9.797961.387331121.33N/A N/A N/A 0.15718700s
101.387331121.33N/A N/A N/A 0.15718700s

Property Profiles for 1-Methyl-3-phenylpiperazine

Heat Capacity (Cp) vs Pressure

Download image

Density vs Pressure

Download image

Thermodynamic Property Profile at Constant Temperature

This page presents the pressure-dependent thermodynamic and transport properties of 1-Methyl-3-phenylpiperazine (CAS 5271-27-2) calculated at a constant temperature of 298 K (25 °C) over the pressure range 0.10-10 bar.

The properties shown - specific heat capacity (Cp), density (ρ), dynamic viscosity (μ), thermal conductivity (k), Prandtl number (Pr), molar volume (Vm), specific enthalpy (H), and specific entropy (S) - are widely used in process simulation, fluid-flow analysis, compression studies, and equipment design.

All values are generated programmatically using validated thermodynamic correlations and equations of state and represent equilibrium properties at the specified temperature.


Understanding Pressure Effects on Properties

  • Density (ρ) and molar volume (Vm) show strong dependence on pressure, especially for gases and supercritical fluids, and are essential for compressor, pipeline, and storage calculations.
  • Specific heat capacity (Cp) may vary with pressure near critical regions and affects energy balance calculations.
  • Dynamic viscosity (μ) influences pressure drop, flow regime, and transport behavior.
  • Thermal conductivity (k) and Prandtl number (Pr) are required for heat-transfer correlations under pressurized conditions.
  • Specific enthalpy (H) and specific entropy (S) are key variables in compression, expansion, and thermodynamic cycle analysis.

Pressure-dependent trends provide insight into real-fluid behavior beyond ideal-gas assumptions.


Engineering Applications

Pressure-dependent property data for 1-Methyl-3-phenylpiperazine at constant temperature is commonly required in:

  • Compressor and pump design
  • Pipeline and pressure-drop calculations
  • High-pressure reactor modeling
  • Gas processing and separation systems
  • Thermodynamic cycle and process simulation

These profiles are especially useful when evaluating non-ideal behavior at elevated pressures.


Frequently Asked Questions

At what temperature are these properties calculated?
All properties on this page are calculated at a constant temperature of 298 K (25 °C).

Can this data be used for high-pressure design studies?
Yes. The data is suitable for preliminary engineering calculations, simulation validation, and educational use.

Can I change the temperature or pressure range?
Yes. Use the interactive controls above to generate custom pressure-dependent profiles.

Explore Other Chemicals

3-Chlorobenzylsulfonyl chloride

CAS: 24974-73-0

decyltrimethoxysilane

CAS: 5575-48-4

ethyl 2-chloro-5-cyano-6-methyl-3-pyridinecarboxylate

CAS: 75894-43-8

5-Ethylthio-1H-tetrazole

CAS: 89797-68-2

pentanoic acid, 4-methyl-3-oxo-, methyl ester

CAS: 42558-54-3

cyclopropylboronic acid

CAS: 411235-57-9

2-Chloro-L-phenylalanine

CAS: 103616-89-3

2-Fluoro-3-pyridinol

CAS: 174669-74-0

5-Fluoropyridine-2-carboxylic acid

CAS: 107504-08-5

2-Bromo-4-pyridinecarboxaldehyde

CAS: 118289-17-1

Browse A-Z Chemical Index