Cooling Tower Efficiency: Formula, Psychrometric Principles, and Real-World Optimization

Chemcasts Team
December 3, 2025
Cooling Tower Efficiency: Formula, Psychrometric Principles, and Real-World Optimization

Cooling Tower Efficiency: Formula, Psychrometric Principles, and Real-World Optimization

🏭 Introduction

Cooling towers are the unsung workhorses of industrial plants, daily rejecting gigawatts of waste heat generated by chemical reactors, gas turbines, and HVAC systems, using nothing but air and water.

Yet, 90% of operators cannot answer:

"What is my cooling tower's true efficiency — and how do I improve it?"

This guide is your complete playbook for:

  • Real efficiency calculation (NOT just textbook numbers)
  • Psychrometrics to predict performance
  • Diagnosing hidden losses with field data
  • Implementing low-cost upgrades that save 50K50K–200K/year
  • Leveraging digital tools and automation

1️⃣ Real Formula for Efficiency of Cooling Towers

Forget the oversimplified version — true efficiency accounts for evaporation, drift, and air saturation.

Standard Efficiency (η_std)

ηstd(%)=ThotTcoldThotTwb×100\eta_\text{std} (\%) = \frac{T_\text{hot} - T_\text{cold}}{T_\text{hot} - T_\text{wb}} \times 100

But this ignores evaporation rate.

True Thermal Efficiency (η_true)

ηtrue(%)=QrejectedQtheoretical×100=m˙watercp(ThotTcold)+m˙evapλm˙air,dry(hsat@Twbhin)\eta_{\text{true}} (\%) = \frac{Q_{\text{rejected}}}{Q_{\text{theoretical}}} \times 100 = \frac{ \dot{m}_{\text{water}} \cdot c_p \cdot (T_{\text{hot}} - T_{\text{cold}}) + \dot{m}_{\text{evap}} \cdot \lambda }{ \dot{m}_{\text{air,dry}} \cdot (h_{\text{sat@}T_{\text{wb}}} - h_{\text{in}}) }

Explanation

TermMeaning
m˙evap\dot{m}_\text{evap}Evaporation rate (kg/h)
λ\lambdaLatent heat of vaporization (~2450 kJ/kg)
hsat,wbh_{\text{sat,wb}}Enthalpy of saturated air at wet-bulb temperature

Reality Check: Most towers run at 55–75% η_std, but only 40–60% η_true due to poor air utilization.


2️⃣ Field Example: 5000 m³/h Cross-Flow Tower

ParameterValue
Water flow5000 m³/h
ThotT_\text{hot}43.2 °C
TcoldT_\text{cold}32.8 °C
Ambient DB35 °C
Air flow1,800,000 m³/h

Step 1: Standard Efficiency

ηstd=43.232.843.228.5×100=70.7%\eta_\text{std} = \frac{43.2 - 32.8}{43.2 - 28.5} \times 100 = \textbf{70.7\%}

Step 2: Heat Rejection

Q=m˙cpΔT=5000×4180×(43.232.8)=217 MWQ = \dot{m} c_p \Delta T = 5000 \times 4180 \times (43.2 - 32.8) = \textbf{217 MW}

Step 3: Rate of Evaporation

m˙evap0.0018×m˙water×Range=93kg/min\dot{m}_\text{evap} \approx 0.0018 \times \dot{m}_\text{water} \times \text{Range} = 93 \, \text{kg/min}

Step 4: True Efficiency

Using psychrometric chart:

  • hsat@28.5°C=83kJ/kgh_\text{sat@28.5°C} = 83 \, \text{kJ/kg}
  • hin=92kJ/kgh_\text{in} = 92 \, \text{kJ/kg} (oversaturated)
ηtrue58%η_\text{true} ≈ 58\%

Insight: Tower is only 58% thermally efficient despite 70% η_std.


3️⃣ Psychrometrics: The Hidden Driver

Wet-Bulb Depression

WB Depression=TDBTWB\text{WB Depression} = T_\text{DB} - T_\text{WB}
  • Dry climate (UAE summer): 12–15 °C → high potential
  • Tropical (Singapore): 1–3 °C → low potential

Saturation Efficiency

ηsat=Tair,outTair,inTwater,inTwb\eta_\text{sat} = \frac{T_\text{air,out} - T_\text{air,in}}{T_\text{water,in} - T_\text{wb}}
  • Target: > 85% for counter-flow
  • Cross-flow: 70–80%

Pro Tip: Plot air path on psychrometric chart — if it doesn’t reach 95% RH, you’re losing capacity.


4️⃣ The 7 Key Performance KPIs

KPIFormulaTargetImpact if Off
RangeThotTcoldT_\text{hot} - T_\text{cold}8–12 °CToo low → undersized chiller
ApproachTcoldTwbT_\text{cold} - T_\text{wb}3–5 °CToo high → poor heat transfer
L/G Ratiom˙water/m˙air,dry\dot{m}_\text{water} / \dot{m}_\text{air,dry}0.8–1.2Too high → flooding
Evaporation Rate0.0018×Range×m˙water0.0018 \times \text{Range} \times \dot{m}_\text{water}1–2%High → makeup cost
Drift LossMeasured via tracer< 0.005%High → environmental fines
Merkel Number (KaV/L)cpdThsath\int \frac{c_p dT}{h_\text{sat} - h}1.0–2.0Low → poor fill performance
Fan EfficiencyAir powerElectric power\frac{\text{Air power}}{\text{Electric power}}> 75%Low → energy waste

5️⃣ Root Causes of Low Efficiency: Field Data

SymptomRoot CauseFix CostROI
Approach > 7 °CFouled fill (scale/biofilm)$15K clean6 months
High ΔP across fillClogged nozzles$2K flush1 month
Fan current < 80% FLABelt slip / VFD fault$3K repair2 months
T_cold > T_wb + 6 °CLow airflowVFD tuning3 months
Make-up > 2.5%Drift eliminator damage$8K replace9 months

6️⃣ 10 Proven Optimization Strategies

  1. Install VFDs + Smart Control

    • Vary fan speed depending on approach setpoint
    • Saves 30–50% fan power
    • Payback: 12–18 months
  2. High-Efficiency Fill Upgrade

TypeKaV/LCostLife
Splash0.8Low5 yrs
Film (PVC)1.5Medium10 yrs
Trickle (PP)2.2Low15+ yrs

Case Study: 1000 RT tower → +2 °C range, -15% fan power

  1. Automated Chemical Dosing

    • ORP + conductivity control
    • Prevents scaling & Legionella
    • Reduces blowdown by 40%
  2. Drift Eliminator Retrofit

    • Cellular PVC → < 0.001% drift
    • Saves 100 m³/day of water in large towers
  3. Infrared Thermography

    • Scan fill for hot spots
    • Enables predictive cleaning

7️⃣ Digital Twin & Predictive Analytics

Digital Twin of a Cooling Tower

import CoolProp as CP

def tower_efficiency(T_hot, T_cold, T_wb, RH):
    h_in = CP.HAPropsSI('H', 'T', T_hot+273.15, 'P', 101325, 'R', RH/100)
    h_sat = CP.HAPropsSI('H', 'T', T_wb+273.15, 'P', 101325, 'R', 1.0)
    return (T_hot - T_cold) / (T_hot - T_wb) * 100

🔧 Predictive Maintenance

  • Vibration sensors detect bearing wear 30 days early
  • AI models predict approach creep from weather + load

8️⃣ Tower Type Comparison (2025 Data)

Typeη_stdFootprintMaintenanceBest For
Natural Draft60–65%HugeLowPower plants
Counter-Flow Induced75–85%MediumMediumRefineries
Cross-Flow FRP65–75%SmallHighRooftop
Hybrid (Wet+Dry)70–80%LargeComplexWater-scarce sites

9️⃣ Advanced Design: Merkel Number Method

For new tower sizing:

KaV/L=TcoldThotcpdT(hsathair)\text{KaV/L} = \int_{T_\text{cold}}^{T_\text{hot}} \frac{c_p \, dT}{(h_\text{sat} - h_\text{air})}

Rule of Thumb:

  • KaV/L = 1.0 → standard fill
  • KaV/L = 2.0 → high-performance trickle fill

Use Chebyshev integration, or CTI Toolkit for accuracy.


⚡ 10️⃣ Energy-Cost Impact Calculator

ParameterValue
Tower duty200 MW
Efficiency gain+5%
Chiller COP5.0
Electricity cost$0.08/kWh

Annual Savings:

ΔQ=10MWΔP=2MWSavings=$1.4M/year\Delta Q = 10 \, \text{MW} \rightarrow \Delta P = 2 \, \text{MW} \rightarrow \text{Savings} = \$1.4M/\text{year}

🧰 11️⃣ Maintenance Checklist (Print & Laminate)

  • Check fan blade pitch (every 3 months)
  • Inspect drift eliminators for gaps
  • Measure approach vs design (daily)
  • Clean strainers (weekly)
  • Test water chemistry (TDS, pH, biocide)
  • Verify VFD setpoint logic
  • Log makeup & blowdown

📘 12️⃣ References & Standards

  • CTI STD-201 – Thermal Performance Certification
  • ASHRAE 90.1 – Energy Standard for Cooling Towers
  • IAPWS-95 – Water/Steam Properties
  • API 661 – Air-Cooled Exchangers (wet bulb design)
  • Marley Technical Report (2024) – Fill Performance